3.525 \(\int \sec ^3(c+d x) (a+b \tan (c+d x))^2 \, dx\)

Optimal. Leaf size=99 \[ \frac{\left (4 a^2-b^2\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{\left (4 a^2-b^2\right ) \tan (c+d x) \sec (c+d x)}{8 d}+\frac{5 a b \sec ^3(c+d x)}{12 d}+\frac{b \sec ^3(c+d x) (a+b \tan (c+d x))}{4 d} \]

[Out]

((4*a^2 - b^2)*ArcTanh[Sin[c + d*x]])/(8*d) + (5*a*b*Sec[c + d*x]^3)/(12*d) + ((4*a^2 - b^2)*Sec[c + d*x]*Tan[
c + d*x])/(8*d) + (b*Sec[c + d*x]^3*(a + b*Tan[c + d*x]))/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0988038, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3508, 3486, 3768, 3770} \[ \frac{\left (4 a^2-b^2\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{\left (4 a^2-b^2\right ) \tan (c+d x) \sec (c+d x)}{8 d}+\frac{5 a b \sec ^3(c+d x)}{12 d}+\frac{b \sec ^3(c+d x) (a+b \tan (c+d x))}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3*(a + b*Tan[c + d*x])^2,x]

[Out]

((4*a^2 - b^2)*ArcTanh[Sin[c + d*x]])/(8*d) + (5*a*b*Sec[c + d*x]^3)/(12*d) + ((4*a^2 - b^2)*Sec[c + d*x]*Tan[
c + d*x])/(8*d) + (b*Sec[c + d*x]^3*(a + b*Tan[c + d*x]))/(4*d)

Rule 3508

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(b*(d*Se
c[e + f*x])^m*(a + b*Tan[e + f*x]))/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(d*Sec[e + f*x])^m*(a^2*(m + 1) - b^
2 + a*b*(m + 2)*Tan[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 + b^2, 0] && NeQ[m, -1]

Rule 3486

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(d*Sec[
e + f*x])^m)/(f*m), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \sec ^3(c+d x) (a+b \tan (c+d x))^2 \, dx &=\frac{b \sec ^3(c+d x) (a+b \tan (c+d x))}{4 d}+\frac{1}{4} \int \sec ^3(c+d x) \left (4 a^2-b^2+5 a b \tan (c+d x)\right ) \, dx\\ &=\frac{5 a b \sec ^3(c+d x)}{12 d}+\frac{b \sec ^3(c+d x) (a+b \tan (c+d x))}{4 d}+\frac{1}{4} \left (4 a^2-b^2\right ) \int \sec ^3(c+d x) \, dx\\ &=\frac{5 a b \sec ^3(c+d x)}{12 d}+\frac{\left (4 a^2-b^2\right ) \sec (c+d x) \tan (c+d x)}{8 d}+\frac{b \sec ^3(c+d x) (a+b \tan (c+d x))}{4 d}+\frac{1}{8} \left (4 a^2-b^2\right ) \int \sec (c+d x) \, dx\\ &=\frac{\left (4 a^2-b^2\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{5 a b \sec ^3(c+d x)}{12 d}+\frac{\left (4 a^2-b^2\right ) \sec (c+d x) \tan (c+d x)}{8 d}+\frac{b \sec ^3(c+d x) (a+b \tan (c+d x))}{4 d}\\ \end{align*}

Mathematica [A]  time = 0.0594228, size = 120, normalized size = 1.21 \[ \frac{a^2 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 \tan (c+d x) \sec (c+d x)}{2 d}+\frac{2 a b \sec ^3(c+d x)}{3 d}-\frac{b^2 \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b^2 \tan (c+d x) \sec ^3(c+d x)}{4 d}-\frac{b^2 \tan (c+d x) \sec (c+d x)}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3*(a + b*Tan[c + d*x])^2,x]

[Out]

(a^2*ArcTanh[Sin[c + d*x]])/(2*d) - (b^2*ArcTanh[Sin[c + d*x]])/(8*d) + (2*a*b*Sec[c + d*x]^3)/(3*d) + (a^2*Se
c[c + d*x]*Tan[c + d*x])/(2*d) - (b^2*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (b^2*Sec[c + d*x]^3*Tan[c + d*x])/(4*
d)

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 143, normalized size = 1.4 \begin{align*}{\frac{{b}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}}{4\,d \left ( \cos \left ( dx+c \right ) \right ) ^{4}}}+{\frac{{b}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}}{8\,d \left ( \cos \left ( dx+c \right ) \right ) ^{2}}}+{\frac{\sin \left ( dx+c \right ){b}^{2}}{8\,d}}-{\frac{{b}^{2}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{8\,d}}+{\frac{2\,ab}{3\,d \left ( \cos \left ( dx+c \right ) \right ) ^{3}}}+{\frac{{a}^{2}\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{{a}^{2}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(a+b*tan(d*x+c))^2,x)

[Out]

1/4/d*b^2*sin(d*x+c)^3/cos(d*x+c)^4+1/8/d*b^2*sin(d*x+c)^3/cos(d*x+c)^2+1/8/d*sin(d*x+c)*b^2-1/8/d*b^2*ln(sec(
d*x+c)+tan(d*x+c))+2/3/d*a*b/cos(d*x+c)^3+1/2*a^2*sec(d*x+c)*tan(d*x+c)/d+1/2/d*a^2*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.42239, size = 174, normalized size = 1.76 \begin{align*} \frac{3 \, b^{2}{\left (\frac{2 \,{\left (\sin \left (d x + c\right )^{3} + \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, a^{2}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + \frac{32 \, a b}{\cos \left (d x + c\right )^{3}}}{48 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

1/48*(3*b^2*(2*(sin(d*x + c)^3 + sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - log(sin(d*x + c) + 1)
 + log(sin(d*x + c) - 1)) - 12*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x
+ c) - 1)) + 32*a*b/cos(d*x + c)^3)/d

________________________________________________________________________________________

Fricas [A]  time = 2.04285, size = 289, normalized size = 2.92 \begin{align*} \frac{3 \,{\left (4 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (4 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 32 \, a b \cos \left (d x + c\right ) + 6 \,{\left ({\left (4 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, b^{2}\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/48*(3*(4*a^2 - b^2)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(4*a^2 - b^2)*cos(d*x + c)^4*log(-sin(d*x + c)
+ 1) + 32*a*b*cos(d*x + c) + 6*((4*a^2 - b^2)*cos(d*x + c)^2 + 2*b^2)*sin(d*x + c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan{\left (c + d x \right )}\right )^{2} \sec ^{3}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(a+b*tan(d*x+c))**2,x)

[Out]

Integral((a + b*tan(c + d*x))**2*sec(c + d*x)**3, x)

________________________________________________________________________________________

Giac [B]  time = 1.49328, size = 336, normalized size = 3.39 \begin{align*} \frac{3 \,{\left (4 \, a^{2} - b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \,{\left (4 \, a^{2} - b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) + \frac{2 \,{\left (12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 3 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 48 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} - 12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 21 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 48 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 21 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 16 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 16 \, a b\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

1/24*(3*(4*a^2 - b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(4*a^2 - b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1))
+ 2*(12*a^2*tan(1/2*d*x + 1/2*c)^7 + 3*b^2*tan(1/2*d*x + 1/2*c)^7 - 48*a*b*tan(1/2*d*x + 1/2*c)^6 - 12*a^2*tan
(1/2*d*x + 1/2*c)^5 + 21*b^2*tan(1/2*d*x + 1/2*c)^5 + 48*a*b*tan(1/2*d*x + 1/2*c)^4 - 12*a^2*tan(1/2*d*x + 1/2
*c)^3 + 21*b^2*tan(1/2*d*x + 1/2*c)^3 - 16*a*b*tan(1/2*d*x + 1/2*c)^2 + 12*a^2*tan(1/2*d*x + 1/2*c) + 3*b^2*ta
n(1/2*d*x + 1/2*c) + 16*a*b)/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d